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Abstract: Chemists have always derived their knowledge about chemical reactions by inductive learning from
observations on a series of individual chemical reactions. Predictions of the products of chemical reactions are
made by analogy. With the availability of large reaction databases this process can be automated. In this paper a
new method based on a Kohonen neural network and physicochemical variables for describing reaction centers is
developed for this purpose. The results with two reaction datasets show how a set of chemical reactions with the
same reaction center can automatically be classified, clearly revealing different levels of similarities of the reactions
under investigation. The relative positions of reactions and clusters in the two-dimensional Kohonen map offer
extra chemical information. A third reaction dataset is used to show how a trained Kohonen network can be used
to predict reaction types for organic reactions.

Introduction

The advent of computers in chemical laboratories is increas-
ingly influencing the work of organic chemists. Several
computerized reaction databases containing hundreds of thou-
sands, even several millions, of reactions are available,1-3

offering an easy way to access a cornucopia of individual
reaction instances. It is the user’s responsibility to analyze the
retrieved reaction data and thus discover the essential features
of a reaction type. However, often a single search can lead to
a hit list of several hundred reactions, and thus the manual
analysis is both laborious and time-consuming.
Another achievement in the application of computers in

organic chemistry is the development of a number of computer-
assisted synthesis design systems, such as LHASA,4WODCA,5-7

and SYNGEN,8 and reaction prediction systems, such as EROS9

and CAMEO.10 In contrast to reaction database systems, both
synthesis design and reaction prediction systems are knowledge-
based; i.e., they must work with general representations of
reaction types rather than with individual reactions. Unfortu-
nately, up to now, the knowledge bases used in many of these
systems still have to be built largely manually, which is both
time-consuming and error-prone, strongly restricting the size
of the knowledge bases and thus the applicability of the existing
systems.

Thus, we see that the organization of hit lists from reaction
retrieval systems as well as the building of knowledge bases
for synthesis design and reaction prediction systems asks for
categorizing reaction instances and for making generalizations
about the resulting categories. One exploration of this problem
has led to the development of the HORACE system (hierarchical
organization of reactions through attribute and condition
eduction).11-14 The importance of the problem of automatically
extracting chemical knowledge from reaction databases warrants
the exploration of other techniques.
Since the very beginning, chemists have derived their

knowledge about chemical reactions by comparison of a series
of individual reactions. Inductive learning has allowed them
to draw conclusions and to make predictions of the products of
chemical reactions by analogy.
In recent years neural networks, computer models of the

information processing in the human brain, have gained
prominence.15,16 Neural networks acquire knowledge about a
certain task or problem from studying a training set of data;
this is an inductive learning process. There are two basic ways
of learning: supervised and unsupervised learning. In the first
case, the neural network system is presented with a set of input
patterns together with the corresponding correct answers. In
unsupervised learning, the network automatically finds the
distinguishing features between the different categories of
patterns and organizes the output in a way that shows the
relationships among the input patterns.
As neural networks mimic inductive learning, a process

chemists have been so successful with in deriving their
knowledge about chemical reactions, it is tempting to use neural
networks for learning from the information contained in reaction
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databases. We will show here how the automatic classification
of individual reactions into classes can be achieved by an
unsupervised neural network technique, a Kohonen network,15-18

leading to a two-dimensional map. The representation of
reactions in a two-dimensional map, the landscape of reactions,
has two important benefits. Different directions in such a map
can represent differenttypesof similarities between reactions,
and differentdistancescan indicate different degrees of similari-
ties.19

Methology

Datasets of Reactions.The datasets of chemical reactions used
for the classification studies were obtained with the reaction retrieval
system ISIS Host20 from the ChemInform RX21 or the Theilheimer20

reaction database. In each case, a reaction substructure search was
performed, retrieving all those reactions with a certain chosen reaction
center, i.e., with the same types of atoms and bonds directly involved
in the bond rearrangement in the reaction.
Physicochemical Influences on the Reaction Site.Structural

characteristics, or more basically the electronic and energy features,
determine a reaction mechanism, and thereby the course of a reaction.
We therefore calculated a variety of electronic effects at the reaction
site, the set of atoms and bonds directly involved in the bond
rearrangement during a reaction. In order to be able to deal with large
datasets of reactions involving fairly sizable molecules, rapid empirical
methods for the calculation of physicochemical effects such as partial
atomic charges22,23 and inductive,24 resonance,23 and polarizability
effects25 were used, which are collected in the PETRA (parameter
estimation of the treatment of reactivity applications) program package.
For instance, the calculation of the physicochemical effects in the 74
product molecules of a dataset of 74 reactions (see the Results and
Discussion) took only about 5 min of cpu time on a SUN Sparc 10
workstation. This process can be performed automatically by transfer-
ring the RDFiles obtained from ISIS Host to the PETRA package. Thus,
no redrawing of the chemical structures is necessary. In fact, these
physicochemical variables can be stored in the reaction database once
and for all and thus would not have to be redone in the classification
of reactions or in the knowledge extraction process. The physico-
chemical factors obtained by these empirical methods have successfully
been used for solving various problems, including the derivation of a
reaction mechanism.26

The number of different physicochemical properties concerning only
the reaction center can be quite large. Some of the physicochemical
features contain low information or high redundancy with respect to
other features. For example, many bond physicochemical features (such
as charge difference) are closely related to the corresponding atom
physicochemical features (partial atomic charges). The distributed
storage schemes of neural networks have an important advantage: The
information representation can be redundant. A Kohonen network is
not sensitive to linear dependencies in the input variables, quite in
contrast to methods like multilinear regression analysis. This means
that one can use all of the available physicochemical factors as input
to the neural network; this both is simple and can avoid losing
information. However, the presence of too many input features can
heavily burden the training process and can produce a neural network

with many more connection weights than those required by the problem.
Important work has been done and is still being made on automatic
feature selection. We have examined a variety of methods such as
statistical methods for the selection of those physicochemical variables
containing most of the information necessary for the reactions. In fact,
the Fishert value proved to be a measure for automatically selecting
the important variables.
In the discussion here, however, we intentionally give only sets of

physicochemical variables selected by the user in order to keep the
discussion simple and also demonstrate how a chemist can introduce
his/her own models into the clustering of reactions by a Kohonen
network.
Kohonen Network. The basic purpose of a Kohonen network is

to construct a nonlinear projection of a high-dimensional pattern to a
lower-dimensional space.15-18 In our case, a Kohonen network consists
of a two-dimensional arrangement of neurons (Figure 1).
The dataset consists ofp input reactions, and each reaction is

described bym physicochemical variables and can be treated as an
m-dimensional input vector:

Each neuronj has as many weightsm as there are variables for
describing a reaction. Thesem weight values constitute anm-
dimensional weight vector:

wheren is the number of neurons in the Kohonen network.
In a Kohonen network, an input pattern is presented to all neurons

of the network and is then mapped intooneneuron. The selection of
the matching (winning) neuron for a given input reactionXs is made
by comparison of the Euclidean distances,d, between the input vector,
Xs, and all then weight vectors:

The neuron,j, whose weight vector has the smallest distance value,
dsj, is selected as the matching neuron for the input patternXs.
The weights of the winning neuron are adjusted in the learning

process such that they become even more similar to the input pattern.
Furthermore, the weights of all the other neurons are also adjusted but
to an amount decreasing with increasing topological distance from the
winning neuron. A Kohonen network is therefore also called a self-
organizing feature map. It is necessary to present all input patterns
into the network several times, in order that the weight values can
gradually be adjusted in such a way that the weight vectors can
approximate the input pattern vectors as good as possible.
After the learning process is completed, the entire dataset is presented

again to the network one by one and each winning neuron in the
competitive layer can be determined using the same method as described
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Figure 1. Basic architecture of a Kohonen network. An input pattern
(vector), X, consists ofm elements which are presented to the
corresponding input unit. Each neuron of the network is represented
by a column withm weights,wjk.

Xs ) (xs1, xs2, ...,xsm) s) 1, 2, ...,p (1)

W j ) (wj1, wj2, ...,wjm) j ) 1, 2, ...,n (2)

dsj ) [∑
i)1

m

(xsi - wji)]
1/2 j ) 1, 2, ...,n (3)

4034 J. Am. Chem. Soc., Vol. 119, No. 17, 1997 Chen and Gasteiger



above. These winning neurons of all the input patterns are then labeled
with appropriate markers characterizing the corresponding input pat-
terns, leading to the final Kohonen feature map.
Automatic Detection of Clusters in the Kohonen Map. The

unsupervised learning of a Kohonen network does not utilize any
information on the relationships of the input in the learning process. A
Kohonen network produces a map showing the indices of all the
reactions in the corresponding occupied neurons. The problem is then
how to automatically detect clusters in such a two-dimensional map.
The decisive factor which determines the final distribution of the

input patterns in the map is the weight values of the neurons of the
trained network (see eq 3). In order to perceive relationships and
clusters in the map, one has to compute and compare the Euclidean
distances of two weight vectors of each directly neighboring neuron
pair.27 Neurons which have small weight distances between each other
are quite similar and may form one cluster. Large weight distances
separate different clusters. Single neurons having large weight distances
to all its neighbor neurons indicate outliers. We will show that such
an automatic classification corresponds quite well to an intellectual
assignment of reaction types.

Results and Discussion

A. Classification of 74 Reactions. The first dataset was
obtained by retrieving all reactions with the reaction center
shown in Figure 2 from the reaction database of the ChemInform
RX 1994.21 Seventy-four reactions were found.

The reaction center shown in Figure 2 is common to several
different reaction types, such as acylations of arenes, acylations
of CdC bonds, and nucleophilic aliphatic substitution of acyl
chlorides. These reactions show quite different features around
the reaction site and can occur under quite different reaction
conditions.
With this first dataset we wanted to explore the use of a

Kohonen network for classifying chemical reactions in order
to build a knowledge base forsynthesis design. In synthesis
design, one starts with the reactionproduct, the target molecule,
and considers reactions in a retrosynthetic manner. Thus, only
physicochemical variables of theproductswere chosen for
representing a chemical reaction. In order to keep the study
transparent, variables were to be selected by the user and the
number of variables should be as small as possible. From all
the atoms of the reaction center, carbon atom 2 (see Figure 2)
shows the widest structural variety, and therefore it was decided
to consider physicochemical properties of this atom, only. In
order to ensure that the more important physicochemical effects,
charge distributions and inductive, resonance, and polarizability
effects, operative at this atom of the reaction site are considered,
the following variables were chosen: the total charge,qtot, the
σ- and π-electronegativities,øσ and øπ, the effective atom
polarizability,Ri, and an indicator variable for aromaticity,aar,
as shown in Table 1. Values of these variables were calculated
and assigned to the atoms using the PETRA package of
empirical methods.22-25

The next important task is to determine the size of the
Kohonen map. With five physicochemical properties for
describing the reaction center of the product of each reaction
(see Table 1), the chosen Kohonen network needs five units in
the input layer. Choosing a small number of neurons increases
the danger that conflicts arise; i.e., reactions belonging to
different types will end up in the same neuron. With a large
Kohonen network the number of input data becomes too small
for the adjustment of the weights to be of significance.
Systematic tests with Kohonen networks ranging in size from

3× 3 to 50× 50 showed that networks having between 1 and
3 times as many neurons as input reactions perform quite well.
Specifically, we have chosen for the classification of 74 reactions
144 neurons arranged in a 12× 12 grid. Figure 3 shows the
Kohonen map obtained. Each small square represents a neuron;
the number within a neuron is the index of the reaction mapped
into it. The squares containing no numbers are called empty
neurons.
Another form of the Kohonen map obtained for the same

dataset is shown in Figure 4. In this map, the weight distance
values between two neighboring neurons are calculated by eq
3 and are represented by vertical walls between two neurons.
The height of the wall indicates the magnitude of the weight
distance; only distances larger than 0.85 are indicated.
Three large clusters can be identified on the right-hand side,

(27) Ultsch, A.; Guimaraes, G.; Korus, D.; Li, H.Proc. Transputer
Anwender Treffen/World Transputer Congress TAT/WTC 93 Aachen;
Springer-Verlag: New York, 1993; pp 194-203.

Figure 2. Reaction center common to all 74 investigated examples of
reactions; the reaction center is indicated by dotted lines. (a) Nucleo-
philic aliphatic substitution of acyl chloride (no. 26). (b) Acylation of
an arene (no. 51).

Table 1. Five Physicochemical Parameters Used To Characterize
each Reaction Center of the Reactions in the First Dataset of 74
Reactions

a qtot ) total charge.øσ ) σ-electronegativity.øπ ) π-electrone-
gativity. Ri ) effective atom polarizability.aar) aromaticity indicator.
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in the central part, and on the left-hand side of Figure 4. Several
small clusters, or subclusters, are found at the upper part of the
map.
The individual 74 reactions were intellectually assigned by

chemists to different reaction types to confirm the correctness
of the clusters detected on the basis of the above “weight
distance rule”. Three general reaction types were found, and
they were marked in different levels of gray in identifying the
mapping shown in Figure 5a: dark gray indicates nucleophilic
aliphatic substitution of acyl chlorides, medium gray stands for
acylation of CdC bonds, and light gray stands for acylation of
arenes. In Figure 5a the weight distances between adjacent
neurons are indicated by lines with thickness increasing with
the weight difference.
An attempt was made to also assign empty neurons, neurons

not having received reactions in order to make the separation
into clusters, the grouping into reaction types, by the Kohonen
network even clearer. To this effect a K-nearest neighbor
technique28 was used: all neurons in Figure 5a that had
neighboring neurons assigned to only one class were also
assigned to this class. This led to Figure 5b.
An even more completely assigned map can be obtained when

also neurons are colored that have neighbors of different classes
but with the number of neighbors of one class dominating. As
this can be easily verified, we refrain from giving results.

Figure 5b clearly shows how reactions belonging to the same
reaction type are grouped together by the Kohonen network.
Furthermore, it can also be recognized that the larger weight
distances occur in the border region between two reaction types.
The intellectual classification (shown in Figure 5) corresponds
quite nicely to the automatic separation of the Kohonen map
into regions by the weight distances as shown in Figure 4.
Thus, indeed, the weight distances of a Kohonen map offer

a method for the automatic classification of reactions into
chemically significant types.
Chemical Contents of the Kohonen Map. A detailed

analysis of the mapping of reactions into the Kohonen network
goes beyond the scope of this paper. It shows that the
arrangement of the various reactions in the Kohonen map, the
landscape of organic reactions, reflects a high degree of chemical
information. We have already seen that mountain ranges
separate different reaction types. With the next dataset we will
see that lower elevations in mountain ridges, mountain passes,
indicate smooth transitions between reaction types. Here, we
will show that the further reactions are separated, the more
different they are, even within the same reaction class. In
wandering from one reaction across the landscape, a smooth(28) See ref 16, pp 178-179.

Figure 3. Kohonen map obtained for the classification of 74 reactions.
The numbers within the map are reactions indices.

Figure 4. Same map as in Figure 3 showing the extra information on
clusters detected using weight distance information. The wall indicates
where the weight distance between adjacent neurons is larger than 0.85.

Figure 5. Indication of the weight distance between adjacent neurons
by the thickness of lines separating them. The occupied neurons are
marked in different gray levels: dark gray indicates nucleophilic
aliphatic substitution of acyl chlorides, medium gray stands for acylation
of CdC bonds, and light gray stands for acylation of arenes. (a) Only
neurons with mapped reactions are marked. (b) Assignment of internal
empty neurons to the corresponding clusters.
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change in reaction type can be observed. To limit the
discussion, we only show in Figure 6 the cluster of acylations
of alkenes.
In neuron (5, 1) we observe with reaction no. 41 an acylation

of a double bond doubly activated by heteroatoms, a sulfur and
a nitrogen atom. All reactions at the left-most part of this map,
reaction nos. 41, 42, 43, 49, and 48, comprise acylations by
aromatic acid chlorides.
Walking across the landscape from reaction no. 41 to the

southeast, to reaction no. 39, we see that a single sulfur atom
together with a carbon atom is sufficient for making this reaction
occur. Progressing further southeast to reaction no. 46, we realize
that an oxygen atom alone can also initiate this reaction type
(however, as shown with the full reaction equation in Figure 7,
a more activating catalyst is needed).
When we pursue directly south from reaction no. 41, to

reaction nos. 49 and 48, it becomes clear that also a nitrogen
atom (in conjunction with a carbon atom) is sufficient to allow
acylation of a double bond. Figure 7 gives reaction nos. 41 and
46 as representatives of this section of the dataset in full reaction
equations.
Let us now briefly turn our attention to the Friedel-Crafts

acylation contained in the left-hand and upper part of the
Kohonen maps of Figure 5. The weight distances indicate in
this figure that there are three subclusters to be found in this
reaction type, which indeed can be confirmed by closer
inspection: At the bottom right-hand corner we find acylations
to imidazoles and pyridinines (e.g., reaction no. 70); the cluster
above contains acylations to the pyrrole system (such as reaction
no. 65). The largest area within this reaction type, the one in
the top right-hand corner, comprises acylations of benzene and
naphthalene derivatives (e.g., reaction no. 50). A representative
for each of these subclasses is given in Figure 7.
The largest number of subclusters is detected in the class of

acylation at Csp3 centers. This is a clear indication of the wide
variety of reactions in this reaction type. For reasons of space
we have to refrain from a detailed discussion. Rather, we only
want to show that reactions at the outskirts of a reaction cluster
constitute special classes. Reaction no. 37, mapped into the
lower left-hand corner, separated by rather large weight distances
from the rest of the reactions (see Figure 5), is an unusual case,

involving the acylation of a 1,4-oxathianium 3,3,3-trifluoro-2-
oxopropyl ylide by trichloroacetic chloride (see Figure 7).29

In summary, in this section we described how clusters, and
thereby reaction types, can be detected in the Kohonen map on

(29) Wittmann, H.Monatsh. Chem.1992, 123, 1207-1212.

Figure 6. Expanded version of Figure 3. The bond made during the
reaction is drawn as a dotted line. Ar) an aromatic ring. N) an
N(III) atom. S) an S(II) atom.

Figure 7. Some individual reactions from different (sub)clusters of
the dataset of 74 reactions.
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the basis of an analysis of the differences in the weights of the
neurons of the two-dimensional map. We showed that the
classes such detected correspond to the intellectual classification
and the assignment of the empty neurons by considerations of
their neighbors. The arrangement of the reactions in such a
two-dimensional map reflects fine details of high chemical
significance. With this, we further explore the merit of this
approach.
B. Classification of 120 Reactions.The second dataset was

obtained by retrieving all those reactions contained in the 1992
edition of the ChemInform RX database21 that involve the
addition of an HsC bond to a CdC bond to form a new CsC
bond. One hundred twenty reactions were found. This reaction
center and some individual reactions of this second dataset are
shown in Figure 8.
In this study, physicochemical variables of theeductside

where used in order to investigate the merit of our approach
for building a knowledge base forreaction prediction. We used
the same physicochemical variables as in the previous study,
except the aromaticity indicator variable (Ri, qtot, øσ, øπ). Rather
than considering these four electronic properties on all atoms
of the reaction site, a selection was made by considering which
effects are likely to be most important at which atoms.
Specifically, σ- and π-electronegativities,øσ and øπ, were
considered at atoms C-1 and C-3, as were the total charges,
qtot, on atoms C-2 and C-3, as well as the effective polarizability,
Ri, on atom C-3 (see Table 2). Here, too, the full set of variables
on all atoms of the reaction site can be used, or a subset of
variables can be automatically selected by statistical methods.
However, we have intentionally chosen the variables on the basis
of chemical intuition in order to show how a small set of
variables deemed chemically significant can do the job of
reaction classification.

With seven physicochemical property data for describing each
reaction under investigation (see Table 2), the Kohonen network
needs seven units in the input layer. Again, the size of the
network was chosen to be 12× 12, amounting to 144 neurons.
This study with 120 reactions, more reactions than the previous
investigation (74 reactions), must lead to more compression of
information, forcing reactions closer together. However, we
will see that the results are still reasonable, no reaction belonging
to different types ending up in the same neuron. In our
experience the classification results are good and quite stable
when the number of neurons is between 1 and 3 times the
number of reaction instances.
The results of the mapping of the reactions into the Kohonen

self-organizing map are shown in Figure 9, which gives the
weight distances to show the grouping of reactions into types.
The map is broken up into a fairly large number of segments,
indicating that quite a variety of reaction types can be found

Figure 8. Reaction center common to the second dataset of 120
reactions. Some individual reactions showing different structural features
around the reaction center are given. (a) Michael addition (no. 38). (b)
Friedel-Crafts alkylation by alkene (no. 191). (c) Photochemical
reaction (no. 94). The bonds in the reaction center are indicated by
dotted lines.

Table 2. Seven Physicochemical Property Data Used To
Characterize Each Reaction Center

a qtot ) total charge.øσ ) σ-electronegativity.øπ ) π-electronega-
tivity. Ri ) effective atom polarizability.

Figure 9. Simplified representation of the clusters automatically
detected for the Kohonen map obtained for the classification of 120
reactions. The occupied neurons are marked in dark gray. The weight
distances larger than 0.85 are indicated with black lines (a) or walls
(b).
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having the reaction scheme shown in Figure 8. However, a
large cluster of similar reactions can be noted in the center-
right part of the map.
In order to better understand and identify the mapping of the

reactions into the Kohonen feature map and to compare the
clusters detected on the basis of the weight distance rule, the
reactions were intellectually classified by chemists. More than
10 different reaction types were identified and assigned by
inspection as shown in Figure 10. These reactions comprise
several reaction types of high importance in chemical synthesis
like Michael additions and Friedel-Crafts alkylations by
alkenes, showing a wide variety of structural features around
the reaction center. However, one also finds some more
uncommon reaction types like the hydride abstraction reaction.
The identification of reaction types by the symbols shown in

Figure 10 is chosen to mark the corresponding occupied neurons
in the map shown in Figure 11.
In all cases but one, the reactions ending up in one neuron

always come from the same type. This indicates that the
classification using the method developed here based on
electronic variables for describing the atoms of the reaction
center and using the differences of a Kohonen network agrees
with the classification performed by chemists on inspection. This
shows the high chemical significance of the method introduced
here. There was only one conflict situation: Neuron (12, 1)
contains both a condensation reaction (no. 117)30 and a reaction
(no. 85)31 that on inspection was shown to have been coded in
the database with a wrong reaction center.14 Thus, the method
presented here even allows one to find errors in the database,

underscoring the high chemical significance of this classification
method. It should be noted that the segmentation of the
Kohonen map into individual clusters as indicated by the weight
distances shown in Figure 9 agrees quite well with the
intellectual assignment of reaction types given in Figure 11.
For reasons of space a more detailed discussion is deferred to
the Supporting Information.
Michael Additions. We only want to present some of the

chemical contents of the map of the largest cluster, that of the
Michael additions. Of 120 reactions, 75 reactions were clas-
sified by chemists as Michael additions, underlining the chemical
importance of this reaction type. These 75 reactions were
mapped into 43 neurons which shows, as we will now discuss,
the large structural variety and scope of this reaction type.
Michael additions are activated by electron-withdrawing

groups at both bonds directly involved in the reaction event,
the CsH bond and the CdC double bond. We have counted
the number of activating groups for each reaction at each of
these bonds separately and have indicated this further dif-
ferentiation of Michael additions in Figure 12. This figure
shows that part of the Kohonen map with reaction instances
belonging to Michael additions.
As Figure 12 shows, reactions that have only one (no marker),

two (2Z), or three (3Z) electron-withdrawing groups at the
reacting HsC bond are quite well separated. By the same
token, those reactions that have two strongly electron-withdraw-
ing groups (*) at the reacting CdC bond are well separated
from those that have only one (no marker). Specifically, all
eleven Michael additions with their reacting HsC bond
activated by three electron-withdrawing groupsseither three
-COOEt groups or three chlorine atomsswere found at the
center top perimeter of the Kohonen map.
The Kohonen network was able to realize, on the basis of

physicochemical variables, that a CsH bond can be activated
to undergo a Michael addition by substituents that can stabilize
a carbanion through delocalization as well as by the combined
inductive effects of three chlorine atoms. Furthermore, it

(30) Cheskis, B. A.; Ivanova, N. M.; Moiseenkov, A. M.; Nefedov, O.
M. IzV. Akad. Nauk SSSR, Ser. Khim.1990, 9, 2025-2036.

(31) Cheskis, B. A.; Isakov, YA. I.; Novikov, A. V.; Moiseenkov, A.
M.; Minachev, KH. M. IzV. Akad. Nauk SSSR, Ser. Khim.1990, 4, 902-
905.

Figure 10. Intellectually assigned reaction types, associated symbols,
and the corresponding number of reaction instances in the second dataset
of 120 reactions.

Figure 11. Kohonen map obtained for the classification of 120
reactions with the occupied neurons marked with different symbols as
shown in Figure 10. (In the original screen output of the map, the
different reaction types are indicated by different colors, giving a more
vivid representation of the various reaction types.)
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demonstrates the inherent similarities among these structurally
quite different reactions by putting them into the same region
of the map.
The mapping of Michael additions by a Kohonen network

also clusters reactions according to whether aromatic groups
are activating the reacting CsH and CdC bonds. This is shown
in the Supporting Information.
Next we turn our attention to those Michael additions which

possess unusual activating functional groups on their reaction
centers. These are marked with S in Figure 13 and further
characterized by the structure of the reaction partner considered
somehow unusual.
The reactions mapped into neurons (3, 7) and (3, 12) have

none of the strongly electron-withdrawing groups mentioned
above and necessary for a Michael addition directly bonded to

the CsH bond. However, such a group, a CdO or an NO2
group, is contained beyond the directly bonded alkene or
benzene system and can exert its influence through conjugation
across the alkene or aromatic system. This is perceived by the
procedure used to calculateπ-electronegativities, underlining
the importance of using such general physicochemical effects
in reaction classification. It should be noted that a classification
based on the types of atoms inR- andâ-positions to the reacting
bonds as presently used in commercial reaction databases such
as the ones distributed by MDL cannot perceive such long-
range effects.
The second type of special Michael additions is found in

neuron (12, 12) in the lower-right corner of the Michael addition
area (Figure 13). This is the only reaction in the entire dataset
where the carbanion is formed at a Csp center.32 All other
Michael additions have the carbanion formed at a Csp3 center.
This is the reason why neuron (12, 12) shows particularly large
weight distances to its neighbor neurons (Figure 9) and was
not merged into the main body of the Michael addition area
(Figure 11). The fact that a cyanide ion can also undergo a
Michael addition thus clearly extends the knowledge so far
found in the other Michael additions. It is therefore quite
appropriate that this reaction was mapped into a neuron of its
own, allowing easy discovery of this extra knowledge.
The reaction mapped into neuron (12, 5) has no strongly

electronegative group directly bonded to the reacting double
bond. However, such a group, a nitro substituent, can be found
on the isoxazole system. It can exert its influence, as observed
for the reaction mapped into neuron (3, 12) through conjugation.
Thus, the vinology principle can work both at the CsH and
the CdC bonds.
The reaction projected into neuron (6, 1) has already been

mentioned previously in conjunction with Figure 12. It shows
that also inductively strongly electron-withdrawing groups can
activate a C-H bond or undergo a Michael addition.
The reaction mapped into neuron (5, 3) shows that a C-H

bond of hydroxynaphthoquinone can undergo a Michael addition
reaction with methyl vinyl ketone (no. 24).33 As can be seen
from Figure 11, neuron (5, 3) is the only occupied neuron in
the Michael addition cluster which has a direct connection to a
neuron occupied by Friedel-Crafts alkylations (neuron (4, 4)).
The unusual structural features of this reaction have also been
detected and indicated by the thick lines surrounding neuron
(5, 3) in Figure 9. It is therefore reasonable to deduce that the
reaction of neuron (5, 3) might possess an unusual feature which
is somehow between those of a typical Michael addition and a
Friedel-Crafts alkylation reaction. This is indeed true! We
know that, in a typical Michael addition, the carbon atom in
the reacting H-C group has an sp3 hybridization state (or an
sp hybridization carbon atom as just met with hydrogen cyanide
in neuron (12, 12)). On the other hand, in a Friedel-Crafts
alkylation by alkenes, the carbon atom in the reacting H-C
group has an sp2 hybridization state and is also a member of an
aromatic ring system. Thus, on the basis of hybridization type
of the carbon atom (Csp2), this reaction is clearly related to
Friedel-Crafts alkylation, whereas the base catalyst indicates
this reaction to be a Michael addition. In fact, the reaction
certainly occurs through a carbanion stabilized by two adjacent
carbonyl groups and subsequent tautomerization.
It is interesting to note that all special Michael additions are

mapped into outskirts of the Kohonen map of the Michael
addition area. This underscores the special nature of these
reactions. The analysis of the special Michael additions

(32) Griffiths, G.; Mettler, H.; Mills, L. S.; Previdoli, F.HelV. Chim.
Acta1991, 74, 309-314.

(33) Saitz, C.; Valderrama, J. A.; Tapia, R.Synth. Commun.1990, 20,
3103-3114.

Figure 12. Functional groups at reaction sites (focus on Michael
addition cluster). 2Z) two electron-withdrawing groups at HsC. 3Z
) three electron-withdrawing groups at HsC. * ) two electron-
withdrawing groups at CdC.

Figure 13. All special Michael additions (S) are found at the border
of the Michael addition cluster.
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extended our knowledge on this important reaction type.
Furthermore, it should be noted that the information on the fine
relationships between different reactions such as those between
reaction no. 24 and typical Michael additions as well as Friedel-
Crafts alkylations can hardly be found by traditional clustering
methods. The above facts stress the advantage of a two-
dimensional representation of the relationships between different
reactions.
Friedel-Crafts Alkylations. The next largest group of

reactions that fall into the scheme treated in this section (see
Figure 8) are Friedel-Crafts alkylations of aromatic compounds
by alkenes. The dataset contained 18 reactions of this type
which were mapped into 8 neurons located at the left-hand side
of the Kohonen map. The weight distances (see Figure 9) split
this area of Friedel-Crafts reactions into several subtypes, a
fact that is supported by closer inspection of the individual
reactions and discussed in the Supporting Information.
Here we only discuss the nine reactions mapped into neurons

(3, 3), (4, 4), and (4, 5). One of these instances (no. 18) is
shown in Figure 14; the others are variations of this theme.
It is interesting to note that these nine reactions, nos. 15-

23, were carried out by the same research group,34which named
them Michael additions. On the basis of the types of bonds
involved (Csp2-H) and the catalyst used (acid), we prefer to call
them Friedel-Crafts alkylations. It is remarkable that the
Kohonen networksbased on the chosen physicochemical vari-
ables for describing the reaction centerswas able to map these
questionable reactions into neurons which are located between
the cluster of Michael additions and that of the Friedel-Crafts
alkylations (see Figure 11). This indicates the characteristics
of these reactions to be somehow related to both Michael
addition and Friedel-Crafts alkylation. The unsupervised
learning technique of the Kohonen network can stay clear of
these semantic problems but rather concentrates on the inherent
features of reactions.
Comparison with HORACE. The approach taken here by

classifying these 120 reactions with a Kohonen neural network
leads to 13 reaction classes. This can be deduced from looking
at Figure 11 using the explanation by symbols contained in
Figure 10.
HORACE generated 30 reaction classes for the same dataset11

and thus was quite often not able to group reactions together
that a chemist would consider as belonging to the same reaction
type. This is largely due to the second phase of HORACE’s
classification, the one using the functional groups (topological
features) at the reaction centers. Reaction instances are kept
apart because they have different functional groups although
these groups exert the same physicochemical effects. This
situation is most clearly reflected by Michael additions. Among
the 30 classes obtained by HORACE, 11 classes belong to
Michael additions. HORACE is forced by the presence of quite
a variety of functional groups around the reaction center to put
these reactions into separate classes. In fact, such a limitation

is inherent in any reaction classification based on functional
groups.
The Kohonen network approach developed here also per-

ceives this large variety of Michael additions. It takes account
of this fact by pushing the special Michael additions to the
outskirts of the area reserved for this group of reactions. Thus,
two things are gained: first these, reactions still belong to the
area of Michael additions, but, second, their peculiar features
are taken care of by having them at the borders of this area.
This, again, underlines the advantage of a two-dimensional
classification scheme, given by a Kohonen map, over a one-
dimensional classification scheme, given by putting reactions
into different classes.
In fact, the entire concept of classifying reactions into classes

becomes questionable. Reactions are under the influence of
many factors; changing some of the more important influences
might lead to a gradual change in the reaction mechanism,
sometimes to such a dramatic extent that a chemist would group
this reaction into a different class. A two-dimensional landscape
can take account of this situation by gradually shifting a reaction
more and more away from its original position until it ends up
in an area that belongs to a different reaction type. We have
seen such a smooth connection between reaction classes in the
case of certain Friedel-Crafts alkylations of aromatic com-
pounds by alkenes that other people preferred to call Michael
additions.
This makes it clear that it is more important to know at what

position a reaction is located in the two-dimensional landscape
rather than to assign it to a specific reaction class. We will see
this when we make predictions on chemical reactions as shown
in the next section.
Automatic Classification of Reactions. Once a Kohonen

network has been trained, it can be used to make predictions.
The weights of the Kohonen network contain in a condensed
and generalized manner the information from the training set
and are thus a representation of knowledge inherent in the entire
dataset.
We illustrate the method and the scope and limitations for

making predictions with an additional dataset having the same
reaction center as the dataset of the 120 reactions (see Figure
8). Fifty-six such reactions were found in the Theilheimer
reaction database.20 For each of these reactions the physico-
chemical variables indicated in Table 2 were calculated and input
into the Kohonen network previously trained with 120 reactions
as discussed above. With such a map it becomes quite
straightforward to assign the new reactions to their correspond-
ing reaction types: When a test reaction falls into the area of a
certain cluster, it can be assigned to the reaction type of that
cluster. When, however, a reaction of the test set is mapped
into an unassignable border empty neuron, the type of that
reaction cannot be decided.
It was found that the trained network produces with the

dataset of 56 reactions 38 correct, 12 undecided, and 6 wrong
classifications. With only 68% ()38/56) correct predictions,
the results appear somehow discouraging. However, this rather
low prediction rate can be attributed to the deficiencies in the
training set. Reactions of the test set that have to be left
undecided had no counterpart in the original training set of 120
reactions.
Therefore, we can deduce that adding more representative

reactions to the training set should significantly improve the
prediction performance of the Kohonen network. The next
experiment was designed to confirm this point.
The dataset of 56 reactions was split into 2 parts, 28 reactions

with eVen indices and 28 reactions withodd indices. The
Kohonen network used had exactly the same architecture as(34) Lüönd, R.; Neier, R.HelV. Chim. Act1991, 74, 91-102.

Figure 14. Reaction that can be considered as either a Michael addition
or a Friedel-Crafts alkylation.
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that used for the classification of the 120 reactions described
above, but now it was trained with the 120 reactions plus the
28 reactions with either even or odd indices. The results are
summarized in Table 3. It can be seen that adding more
representative reactions into the training set significantly
enhances the prediction ability of the Kohonen network.
Specifically, the correct prediction rate for the test set of 28
reactions with odd indices increases from 68% to 75%; for the
test set of 28 reactions with even indices, the correct prediction
rate increases to 86%.
It must be stressed here again that the remaining undecided

and wrongly predicted cases in this experiment still resulted
from special reactions for which there are no similar reaction
instances in the training sets.
According to the above discussion, we can conclude that (a)

the test reactions mapped into a neuron are quite similar to the
training reactions occupying the same neuron, (b) novel or
unusual reactions can be found in empty neurons at the outskirts
of the Kohonen maps, (c) the prediction ability of the Kohonen
network can easily be enhanced through learning from new
examples, (d) in order to make good predictions, it is extremely
important to select a widely representative training dataset, and
(e) the prediction reliability also heavily depends upon the
reliability of assigning empty neurons.

Conclusions

The automatic extraction of chemical knowledge from
reaction data is of great importance both in experimental and
in computer chemistry. The approach developed in this paper
is based on a Kohonen network and a set of physicochemical
variables for the description of the reaction center. An analysis
of the weight distances in the Kohonen networks leads to an
automatic assignment of reactions to different classes. Ap-
plication of these methods to 2 datasets consisting of 74 and
120 reactions, respectively, shows their potential for grouping
a set of chemical reactions into classes, intuitively shown in a
two-dimensional map. Such a map contains rich information
amenable to interesting chemical interpretations as detailed in
the studies reported here.
The self-organizing neural network approach to the analysis

of a set of chemical reactions has several advantages.
(1) Various factors influencing chemical reactions can be

selected as input into the Kohonen network. In this investigation
we have chosen electronic effects exerted onto the reaction
center. However, other effects coming from the starting
materials or products of a reaction or even reaction conditions,
such as reagents, solvent, and catalyst, can be used as input
variables. This gives great flexibility to the approach and allows
an analysis of such features on the grouping of reactions and
their chemical significance. Calculation of the physicochemical
variables used in the present study can directly be initiated with
the RDFiles obtained from the ISIS Host reaction retrieval
system.

(2) The computation time is short, and most of it has to be
spent in the training phase; predictions with neural networks
are rapid indeed. Thus, training the Kohonen network with the
dataset of 120 reactions took 17.5 s on a SUN Sparc10
workstation. Predictions for the test set of 56 reactions took
0.5 s on this workstation.
(3) The size of the Kohonen network can be adjusted. For

the two datasets studied here, the number of neurons (144) was
about twice as large as that of the first dataset (74) or about of
equal size to that of the second reaction dataset (120 reactions).
This is a good compromise for making use of both the similarity
perception and interpolation capabilities of the self-organizing
neural network.
(4) Classification of a series of reactions into various reaction

types is an important endeavor in our understanding of chemical
reactions. However, a classification scheme is by its very nature
one-dimensional and thus can hardly account for the richness
of observations on chemical reactions. A two-dimensional
landscape can much better reflect the result of the various
influences on the course of a chemical reaction. It has space
for showing different kinds of influences and thus differentkinds
of similarities by differentdirections in this landscape, and it
has space for showing differentdegreesof similarities by giving
differentdistances, smaller distances indicating stronger simi-
larities. In this landscape, mountainsslarge weight distances
in the mapsseparate different reaction types; saddles account
for transitions between such reaction types.
(5) The method can be used for the automatic extraction of

knowledge from reaction databases both for reaction prediction
and for synthesis design. For reaction prediction, variables of
the starting materials have to be input into the Kohonen network.
Such a trained network can then be used for making predictions
of the products of a reaction given the starting materials. This
type of application was exemplified with the datasets of 120
reactions and 56 reactions. For synthesis design, variables for
the products of the reactions have to be input into the Kohonen
network. This approach can be extended to make predictions
of strategic bonds in a molecule. This direction was illustrated
with the dataset of 74 reactions.
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Table 3. Summary of the Prediction Results

diction results

no. training set test set correct undecided wrong

I 120 56 38 (68%) 12 6
II 120+ 28 (odd) 28 (even) 24 (86%) 4 0
III 120 + 28 (even) 28 (odd) 21 (75%) 2 5
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